Demographic biases exist in current models used for facial recognition (FR). Our Balanced Faces in the Wild (BFW) dataset is a proxy to measure bias across ethnicity and gender subgroups, allowing one to characterize FR performances per subgroup. We show that results are non-optimal when a single score threshold determines whether sample pairs are genuine or imposters. Furthermore, within subgroups, performance often varies significantly from the global average. Thus, specific error rates only hold for populations matching the validation data. We mitigate the imbalanced performances using a novel domain adaptation learning scheme on the facial features extracted from state-of-the-art neural networks, boosting the average performance. The proposed method also preserves identity information while removing demographic knowledge. The removal of demographic knowledge prevents potential biases from being injected into decision-making and protects privacy since demographic information is no longer available. We explore the proposed method and show that subgroup classifiers can no longer learn from the features projected using our domain adaptation scheme. For source code and data, see https://github.com/visionjo/facerec-bias-bfw.


翻译:目前用于面部识别的模型(FR)中存在着人口偏见。野生(BFW)数据集中的我们平衡面是一个用来衡量族裔和性别分组之间偏见的替代物,可以用来描述每个分组的FR表现特征。我们表明,当一个得分阈值确定抽样对子是否真实或假冒时,结果并不理想。此外,在分组内,业绩往往与全球平均数大不相同。因此,特定误差率只维持与验证数据相匹配的人口。我们利用从最新神经网络提取的面部特征的新版域适应学习计划来缓解不平衡的性能,提升平均性能。拟议方法还保存身份信息,同时消除人口学知识。人口学知识的消失防止了潜在偏差被注入到决策中,并保护隐私,因为人口信息不再可用。我们探讨拟议的方法,并表明分组分类者无法再从利用我们域适应计划预测的特征中学习。关于源码和数据,见https://github.com/visionjo/facerec-bis-bfw。)

0
下载
关闭预览

相关内容

专知会员服务
60+阅读 · 2020年3月19日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
会议交流 | IJCKG: International Joint Conference on Knowledge Graphs
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2023年1月24日
Arxiv
13+阅读 · 2021年10月9日
Arxiv
27+阅读 · 2020年6月19日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
会议交流 | IJCKG: International Joint Conference on Knowledge Graphs
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员