In social science, formal and quantitative models, such as ones describing economic growth and collective action, are used to formulate mechanistic explanations, provide predictions, and uncover questions about observed phenomena. Here, we demonstrate the use of a machine learning system to aid the discovery of symbolic models that capture nonlinear and dynamical relationships in social science datasets. By extending neuro-symbolic methods to find compact functions and differential equations in noisy and longitudinal data, we show that our system can be used to discover interpretable models from real-world data in economics and sociology. Augmenting existing workflows with symbolic regression can help uncover novel relationships and explore counterfactual models during the scientific process. We propose that this AI-assisted framework can bridge parametric and non-parametric models commonly employed in social science research by systematically exploring the space of nonlinear models and enabling fine-grained control over expressivity and interpretability.
翻译:在社会科学中,正式和定量模型,例如描述经济增长和集体行动的模型,被用于制定机械解释、提供预测和揭示所观察到的现象的问题。在这里,我们展示了机器学习系统,以帮助发现社会科学数据集中非线性和动态关系的象征性模型。我们通过扩大神经-共振方法,在吵闹和纵向数据中找到紧凑的功能和差异方程式,表明我们的系统可以用来从经济和社会学的真实世界数据中发现可解释的模型。用象征性回归增强现有工作流程,可以帮助发现新的关系,探索科学过程中的反事实模型。我们提议,这一AI辅助框架可以通过系统地探索非线性模型的空间,并能够精细控制表达性和可解释性,从而将社会科学研究中常用的参数和非参数模型连接起来。