To support the dynamic composition of various devices/apps into a medical system at point-of-care, a set of communication patterns to describe the communication needs of devices has been proposed. To address timing requirements, each pattern breaks common timing properties into finer ones that can be enforced locally by the components. Common timing requirements for the underlying communication substrate are derived from these local properties. The local properties of devices are assured by the vendors at the development time. Although organizations procure devices that are compatible in terms of their local properties and middleware, they may not operate as desired. The latency of the organization network interacts with the local properties of devices. To validate the interaction among the timing properties of components and the network, we formally specify such systems in Timed Rebeca. We use model checking to verify the derived timing requirements of the communication substrate in terms of the network and device models. We provide a set of templates as a guideline to specify medical systems in terms of the formal model of patterns. A composite medical system using several devices is subject to state-space explosion. We extend the reduction technique of Timed Rebeca based on the static properties of patterns. We prove that our reduction is sound and show the applicability of our approach in reducing the state space by modeling two clinical scenarios made of several instances of patterns.
翻译:为支持各种装置/应用程序动态组成,提出了一套用于描述装置通信需要的通信模式,以在护理点将各种装置/应用程序纳入医疗系统的一套动态组成。为了应对时间要求,每个模式将常见的时态特性打破到可由部件在当地执行的更细的系统。基本通信基质的共同时间要求来自这些当地特性。在开发阶段,供应商保证设备的当地特性。虽然各组织采购的装置与其当地特性和中间器件相容,但它们可能不按要求运作。组织网络的延迟性与装置的当地特性相互作用。为了验证部件和网络的时态特性之间的相互作用,我们正式指定了在Rebeca的这种系统。我们使用模式检查模型来核查通信基质基值的衍生时间要求,从网络和装置模型的角度进行核查。我们提供一套模板作为准则,说明正式模式中的医疗系统;使用几种装置的复合医疗系统可能不按要求运作。我们根据固定模式的形态特性扩大时间比卡的减少技术。我们用两种模式的模型来证明我们减少的临床模型的几度。