Physical symptoms caused by high stress commonly happen in our daily lives, leading to the importance of stress recognition systems. This study aims to improve stress classification by selecting appropriate features from Thermal-stress data, ANUstressDB. We explored three different feature selection techniques: correlation analysis, magnitude measure, and genetic algorithm. Support Vector Machine (SVM) and Artificial Neural Network (ANN) models were involved in measuring these three algorithms. Our result indicates that the genetic algorithm combined with ANNs can improve the prediction accuracy by 19.1% compared to the baseline. Moreover, the magnitude measure performed best among the three feature selection algorithms regarding the balance of computation time and performance. These findings are likely to improve the accuracy of current stress recognition systems.


翻译:我们探讨了三种不同的特征选择技术:相关性分析、量度测量和遗传算法。支持病媒机(SVM)和人工神经网络(ANN)模型参与了这三种算法的测量。我们的结果表明,遗传算法加上非本国国民的基因算法可以使预测精确度比基线提高19.1%。此外,计算时间和性能平衡的三个特征选择算法中,所实现的衡量尺度最好。这些结果有可能提高当前压力识别系统的准确性。

0
下载
关闭预览

相关内容

特征选择( Feature Selection )也称特征子集选择( Feature Subset Selection , FSS ),或属性选择( Attribute Selection )。是指从已有的M个特征(Feature)中选择N个特征使得系统的特定指标最优化,是从原始特征中选择出一些最有效特征以降低数据集维度的过程,是提高学习算法性能的一个重要手段,也是模式识别中关键的数据预处理步骤。对于一个学习算法来说,好的学习样本是训练模型的关键。
【CVPR2021】用于目标检测的通用实例蒸馏
专知会员服务
23+阅读 · 2021年3月22日
专知会员服务
52+阅读 · 2020年9月7日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】Kaggle机器学习数据集推荐
机器学习研究会
8+阅读 · 2017年11月19日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
Efficient Transformer for Single Image Super-Resolution
Arxiv
0+阅读 · 2021年10月27日
Arxiv
0+阅读 · 2021年10月24日
Attention Network Robustification for Person ReID
Arxiv
5+阅读 · 2019年10月15日
Efficient and Effective $L_0$ Feature Selection
Arxiv
5+阅读 · 2018年8月7日
Feature Selection Library (MATLAB Toolbox)
Arxiv
7+阅读 · 2018年8月6日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】Kaggle机器学习数据集推荐
机器学习研究会
8+阅读 · 2017年11月19日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
Top
微信扫码咨询专知VIP会员