Feature selection techniques are essential for high-dimensional data analysis. In the last two decades, their popularity has been fuelled by the increasing availability of high-throughput biomolecular data where high-dimensionality is a common data property. Recent advances in biotechnologies enable global profiling of various molecular and cellular features at single-cell resolution, resulting in large-scale datasets with increased complexity. These technological developments have led to a resurgence in feature selection research and application in the single-cell field. Here, we revisit feature selection techniques and summarise recent developments. We review their versatile application to a range of single-cell data types including those generated from traditional cytometry and imaging technologies and the latest array of single-cell omics technologies. We highlight some of the challenges and future directions on which feature selection could have a significant impact. Finally, we consider the scalability and make general recommendations on the utility of each type of feature selection method. We hope this review serves as a reference point to stimulate future research and application of feature selection in the single-cell era.
翻译:在过去二十年中,高通量生物分子数据日益普及,而高通量生物量数据是共同数据属性的一个特点。生物技术的最近进展使得能够以单细胞分辨率对各种分子和细胞特征进行全球剖面分析,从而产生大量复杂的数据集。这些技术发展导致特性选择研究和应用在单细胞领域再次出现特征选择研究和应用。在这里,我们重新审视特征选择技术并总结最近的发展情况。我们审查了这些数据在一系列单细胞数据类型中的多种应用,包括传统细胞测量和成像技术以及最新的单细胞显微技术生成的数据类型。我们强调了特征选择可能产生重大影响的一些挑战和未来方向。最后,我们考虑了各种特征选择方法的可扩展性,并就每种类型的特征选择方法的实用性提出了一般建议。我们希望这一审查成为促进在单一细胞时代今后进行特征选择的研究和应用的参考点。