Feature Selection Library (FSLib) is a widely applicable MATLAB library for Feature Selection (FS). FS is an essential component of machine learning and data mining which has been studied for many years under many different conditions and in diverse scenarios. These algorithms aim at ranking and selecting a subset of relevant features according to their degrees of relevance, preference, or importance as defined in a specific application. Because feature selection can reduce the amount of features used for training classification models, it alleviates the effect of the curse of dimensionality, speeds up the learning process, improves model's performance, and enhances data understanding. This short report provides an overview of the feature selection algorithms included in the FSLib MATLAB toolbox among filter, embedded, and wrappers methods.


翻译:功能选择图书馆(FSLib)是一个广泛应用的 MATLAB 功能选择图书馆(FS) 。 FS 是机器学习和数据挖掘的基本组成部分,多年来在许多不同条件下和不同情景下进行了研究,这些算法旨在根据具体应用中界定的相关程度、偏好程度或重要性,对相关特征进行分级和选择。由于特性选择可以减少培训分类模型所使用的特征数量,因此可以减轻维度诅咒的影响,加快学习过程,改进模型的性能,提高数据理解度。这份简短报告概述了FSLib MATLAB工具箱中包含的过滤、嵌入和包装方法的特征选择算法。

7
下载
关闭预览

相关内容

特征选择( Feature Selection )也称特征子集选择( Feature Subset Selection , FSS ),或属性选择( Attribute Selection )。是指从已有的M个特征(Feature)中选择N个特征使得系统的特定指标最优化,是从原始特征中选择出一些最有效特征以降低数据集维度的过程,是提高学习算法性能的一个重要手段,也是模式识别中关键的数据预处理步骤。对于一个学习算法来说,好的学习样本是训练模型的关键。
商业数据分析,39页ppt
专知会员服务
161+阅读 · 2020年6月2日
Python计算导论,560页pdf,Introduction to Computing Using Python
专知会员服务
74+阅读 · 2020年5月5日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
基于 Carsim 2016 和 Simulink的无人车运动控制联合仿真(四)
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
【学习】(Python)SVM数据分类
机器学习研究会
6+阅读 · 2017年10月15日
【推荐】免费书(草稿):数据科学的数学基础
机器学习研究会
20+阅读 · 2017年10月1日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
【推荐】Python机器学习生态圈(Scikit-Learn相关项目)
机器学习研究会
6+阅读 · 2017年8月23日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Arxiv
4+阅读 · 2019年4月17日
Arxiv
12+阅读 · 2019年3月14日
Accelerated Methods for Deep Reinforcement Learning
Arxiv
6+阅读 · 2019年1月10日
Efficient and Effective $L_0$ Feature Selection
Arxiv
5+阅读 · 2018年8月7日
VIP会员
相关资讯
基于 Carsim 2016 和 Simulink的无人车运动控制联合仿真(四)
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
【学习】(Python)SVM数据分类
机器学习研究会
6+阅读 · 2017年10月15日
【推荐】免费书(草稿):数据科学的数学基础
机器学习研究会
20+阅读 · 2017年10月1日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
【推荐】Python机器学习生态圈(Scikit-Learn相关项目)
机器学习研究会
6+阅读 · 2017年8月23日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Top
微信扫码咨询专知VIP会员