Empirical detection of long range dependence (LRD) of a time series often consists of deciding whether an estimate of the memory parameter $d$ corresponds to LRD. Surprisingly, the literature offers numerous spectral domain estimators for $d$ but there are only a few estimators in the time domain. Moreover, the latter estimators are criticized for relying on visual inspection to determine an observation window $[n_1, n_2]$ for a linear regression to run on. Theoretically motivated choices of $n_1$ and $n_2$ are often missing for many time series models. In this paper, we take the well-known variance plot estimator and provide rigorous asymptotic conditions on $[n_1, n_2]$ to ensure the estimator's consistency under LRD. We establish these conditions for a large class of square-integrable time series models. This large class enables one to use the variance plot estimator to detect LRD for infinite-variance time series (after suitable transformation). Thus, detection of LRD for infinite-variance time series is another novelty of our paper. A simulation study indicates that the variance plot estimator can detect LRD better than the popular spectral domain GPH estimator.
翻译:暂无翻译