In this paper, we propose a probabilistic physics-guided framework, termed Physics-guided Deep Markov Model (PgDMM). The framework targets the inference of the characteristics and latent structure of nonlinear dynamical systems from measurement data, where exact inference of latent variables is typically intractable. A recently surfaced option pertains to leveraging variational inference to perform approximate inference. In such a scheme, transition and emission functions of the system are parameterized via feed-forward neural networks (deep generative models). However, due to the generalized and highly versatile formulation of neural network functions, the learned latent space often lacks physical interpretation and structured representation. To address this, we bridge physics-based state space models with Deep Markov Models, thus delivering a hybrid modeling framework for unsupervised learning and identification of nonlinear dynamical systems. The proposed framework takes advantage of the expressive power of deep learning, while retaining the driving physics of the dynamical system by imposing physics-driven restrictions on the side of the latent space. We demonstrate the benefits of such a fusion in terms of achieving improved performance on illustrative simulation examples and experimental case studies of nonlinear systems. Our results indicate that the physics-based models involved in the employed transition and emission functions essentially enforce a more structured and physically interpretable latent space, which is essential for enhancing and generalizing the predictive capabilities of deep learning-based models.
翻译:在本文中,我们提出了一个概率物理指导框架,称为物理引导深马可夫模型(PgDMM),该框架的目标是从测量数据中推断非线性动态系统的特点和潜在结构,而测量数据对潜在变量的精确推断通常是难以解决的。最近浮现的一个选项是利用变式推断进行近似推断。在这样一个计划中,该系统的过渡和排放功能通过进料前神经网络(深基因模型)进行参数化。然而,由于神经网络功能的通用和高度多功能配置,所学的潜在空间往往缺乏物理解释和结构化代表。为了解决这个问题,我们将基于物理的状态空间模型与深马可夫模型连接起来,从而提供一个混合模型框架,用于利用变异推导推推推推推法进行近感推推导,同时通过对潜空空间的侧面施加物理驱动限制,从而保持动态系统的驱动物理学。我们展示了这种融合的好处,即从基本地进行物理解释和结构化的深度分析,在改进的深度物理学模型方面,我们所采用的模拟模型和实验性实验性实验性实验性实验性实验性实验性实验性实验性实验性研究中,显示了我们所采用的模拟性模拟性模型中所采用的更精确性模型。