Safe and reliable autonomy solutions are a critical component of next-generation intelligent transportation systems. Autonomous vehicles in such systems must reason about complex and dynamic driving scenes in real time and anticipate the behavior of nearby drivers. Human driving behavior is highly nuanced and specific to individual traffic participants. For example, drivers might display cooperative or non-cooperative behaviors in the presence of merging vehicles. These behaviors must be estimated and incorporated in the planning process for safe and efficient driving. In this work, we present a framework for estimating the cooperation level of drivers on a freeway and plan merging maneuvers with the drivers' latent behaviors explicitly modeled. The latent parameter estimation problem is solved using a particle filter to approximate the probability distribution over the cooperation level. A partially observable Markov decision process (POMDP) that includes the latent state estimate is solved online to extract a policy for a merging vehicle. We evaluate our method in a high-fidelity automotive simulator against methods that are agnostic to latent states or rely on $\textit{a priori}$ assumptions about actor behavior.
翻译:安全可靠的自治解决方案是下一代智能运输系统的关键组成部分。 此类系统中的自治车辆必须实时解释复杂和动态的驾驶场景,并预测附近司机的行为。 人的驾驶行为非常细微,对交通参与者来说是特有的。 例如,驾驶者在汽车合并时可能表现出合作或不合作的行为。 这些行为必须加以估计,并纳入安全和高效驾驶的规划过程中。 在这项工作中,我们提出了一个框架,用以估计高速公路上司机的合作水平,并计划与司机明显模拟的潜在行为合并。 潜在参数估计问题通过粒子过滤器解决,以估计合作水平的概率分布。 部分可观测的马尔科夫决定程序(POMDP)包括潜在状态估计,在网上解决,以得出车辆合并政策。 我们用高不灵敏度汽车模拟器评估我们的方法,这些方法对潜伏状态具有怀疑性,或者对行为者行为的假设依赖$\textit{a exprit}。