We propose a new technique for performing state space exploration of closed loop control systems with neural network feedback controllers. Our approach involves approximating the sensitivity of the trajectories of the closed loop dynamics. Using such an approximator and the system simulator, we present a guided state space exploration method that can generate trajectories visiting the neighborhood of a target state at a specified time. We present a theoretical framework which establishes that our method will produce a sequence of trajectories that will reach a suitable neighborhood of the target state. We provide thorough evaluation of our approach on various systems with neural network feedback controllers of different configurations. We outperform earlier state space exploration techniques and achieve significant improvement in both the quality (explainability) and performance (convergence rate). Finally, we adopt our algorithm for the falsification of a class of temporal logic specification, assess its performance against a state-of-the-art falsification tool, and show its potential in supplementing existing falsification algorithms.
翻译:我们提出了一个利用神经网络反馈控制器对封闭环控系统进行国家空间探索的新技术。 我们的方法涉及近似于闭环动态轨迹的敏感度。 我们使用这种近似器和系统模拟器,展示了一种导引的州空间探索方法,该方法可以产生在特定时间对目标国周边进行访问的轨迹。 我们提出了一个理论框架,确定我们的方法将产生一系列轨迹,将到达目标国的适当周边。 我们用不同配置的神经网络反馈控制器对各种系统进行彻底评估。 我们优于早期的空间探索技术,在质量(可探测性)和性能(相近率)两方面都取得了显著的改进。 最后,我们采用了我们的算法,用于伪造某类时间逻辑规范,评估其相对于一个最先进的伪造工具的性能,并展示其补充现有伪造算法的潜力。