Given an unknown $\mathbb{R}^n$-valued function $f$ on a metric space $X$, can we approximate the persistent homology of $f$ from a finite sampling of $X$ with known pairwise distances and function values? This question has been answered in the case $n=1$, assuming $f$ is Lipschitz continuous and $X$ is a sufficiently regular geodesic metric space, and using filtered geometric complexes with fixed scale parameter for the approximation. In this paper we answer the question for arbitrary $n$, under similar assumptions and using function-geometric multifiltrations. Our analysis offers a different view on these multifiltrations by focusing on their approximation properties rather than on their stability properties. We also leverage the multiparameter setting to provide insight into the influence of the scale parameter, whose choice is central to this type of approach.
翻译:暂无翻译