We study the Bayesian inverse problem of learning a linear operator on a Hilbert space from its noisy pointwise evaluations on random input data. Our framework assumes that this target operator is self-adjoint and diagonal in a basis shared with the Gaussian prior and noise covariance operators arising from the imposed statistical model and is able to handle target operators that are compact, bounded, or even unbounded. We establish posterior contraction rates with respect to a family of Bochner norms as the number of data tend to infinity and derive related lower bounds on the estimation error. In the large data limit, we also provide asymptotic convergence rates of suitably defined excess risk and generalization gap functionals associated with the posterior mean point estimator. In doing so, we connect the posterior consistency results to nonparametric learning theory. Furthermore, these convergence rates highlight and quantify the difficulty of learning unbounded linear operators in comparison with the learning of bounded or compact ones. Numerical experiments confirm the theory and demonstrate that similar conclusions may be expected in more general problem settings.


翻译:我们从对随机输入数据的吵闹点评价中,研究希尔伯特空间线性操作员学习线性操作员的巴伊西亚反向问题。我们的框架假定,这个目标操作员在与高山先前和噪音共变操作员共享的基础上,在与强加的统计模型产生的先前和噪音共变操作员共享的基础上,是自我联合和对角操作员的,并且能够处理紧凑、约束甚至无约束的目标操作员。我们从波克纳规范的大家庭中确定后继收缩率,因为数据数量往往难以捉摸,并且对估计错误得出相关的较低界限。在大的数据限制中,我们还提供了与远地点平均估计标准有关的、定义得当的超风险和一般化差距等功能的对准合并率。在这样做时,我们把后端一致性结果与非参数学习理论联系起来。此外,这些趋同率突出并量化了学习无约束线性操作员与学习约束性或紧凑性操作员的困难。数字实验证实了这一理论,并表明在更一般的问题环境中可以预期到类似的结论。

0
下载
关闭预览

相关内容

专知会员服务
32+阅读 · 2021年7月15日
【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
数据科学导论,54页ppt,Introduction to Data Science
专知会员服务
42+阅读 · 2020年7月27日
【斯坦福大学】Gradient Surgery for Multi-Task Learning
专知会员服务
47+阅读 · 2020年1月23日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
机器学习入门的经验与建议
专知会员服务
93+阅读 · 2019年10月10日
分布式并行架构Ray介绍
CreateAMind
9+阅读 · 2019年8月9日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
随波逐流:Similarity-Adaptive and Discrete Optimization
我爱读PAMI
5+阅读 · 2018年2月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年10月19日
Arxiv
0+阅读 · 2021年10月19日
Arxiv
0+阅读 · 2021年10月17日
Arxiv
3+阅读 · 2014年10月9日
VIP会员
相关VIP内容
专知会员服务
32+阅读 · 2021年7月15日
【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
数据科学导论,54页ppt,Introduction to Data Science
专知会员服务
42+阅读 · 2020年7月27日
【斯坦福大学】Gradient Surgery for Multi-Task Learning
专知会员服务
47+阅读 · 2020年1月23日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
机器学习入门的经验与建议
专知会员服务
93+阅读 · 2019年10月10日
相关资讯
分布式并行架构Ray介绍
CreateAMind
9+阅读 · 2019年8月9日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
随波逐流:Similarity-Adaptive and Discrete Optimization
我爱读PAMI
5+阅读 · 2018年2月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员