Probabilistic numerical solvers for ordinary differential equations compute posterior distributions over the solution of an initial value problem via Bayesian inference. In this paper, we leverage their probabilistic formulation to seamlessly include additional information as general likelihood terms. We show that second-order differential equations should be directly provided to the solver, instead of transforming the problem to first order. Additionally, by including higher-order information or physical conservation laws in the model, solutions become more accurate and more physically meaningful. Lastly, we demonstrate the utility of flexible information operators by solving differential-algebraic equations. In conclusion, the probabilistic formulation of numerical solvers offers a flexible way to incorporate various types of information, thus improving the resulting solutions.
翻译:普通差分方程式的概率数字解算器通过贝叶西亚推论计算出初步价值问题的解决方案的后方分布。 在本文中,我们利用它们的概率表达法,将额外信息作为一般可能性术语无缝地纳入其中。我们表明,二阶差分方程式应该直接提供给解决者,而不是将问题转换为第一顺序。此外,通过在模型中加入更高阶级的信息或物理保护法,解决方案变得更加准确和更加具有实际意义。最后,我们通过解决差位-地貌方程式来证明灵活的信息操作者的作用。 总之,数字解算器的概率表达法提供了一种灵活的方式,将各种类型的信息纳入其中,从而改进由此产生的解决方案。