Data availability has dramatically increased in recent years, driving model-based control methods to exploit learning techniques for improving the system description, and thus control performance. Two key factors that hinder the practical applicability of learning methods in control are their high computational complexity and limited generalization capabilities to unseen conditions. Meta-learning is a powerful tool that enables efficient learning across a finite set of related tasks, easing adaptation to new unseen tasks. This paper makes use of a meta-learning approach for adaptive model predictive control, by learning a system model that leverages data from previous related tasks, while enabling fast fine-tuning to the current task during closed-loop operation. The dynamics is modeled via Gaussian process regression and, building on the Karhunen-Lo{\`e}ve expansion, can be approximately reformulated as a finite linear combination of kernel eigenfunctions. Using data collected over a set of tasks, the eigenfunction hyperparameters are optimized in a meta-training phase by maximizing a variational bound for the log-marginal likelihood. During meta-testing, the eigenfunctions are fixed, so that only the linear parameters are adapted to the new unseen task in an online adaptive fashion via Bayesian linear regression, providing a simple and efficient inference scheme. Simulation results are provided for autonomous racing with miniature race cars adapting to unseen road conditions.
翻译:近年来,数据提供量急剧增加,驱动基于模型的控制方法,以利用学习技术改进系统描述,从而控制业绩。阻碍学习方法实际应用控制的两个关键因素是:计算复杂程度高,对不可见条件的概括能力有限。元学习是一个强有力的工具,能够使在一系列有限相关任务中有效学习,便于适应新的不可见任务。本文利用一个利用先前相关任务的数据的系统模型,利用一个系统模型来进行适应模型预测控制,同时能够快速微调闭环操作期间的当前任务。通过高山进程回归模型建模的动态,在Karhunen-Lo ⁇ e{e}ve扩展的基础上,可以大致改写成一个有限的内核元功能线性组合。利用在一系列任务中收集的数据,在一个元培训阶段,将电子功能超能力超能力超能力超能力超能力超能力软件优化,通过尽可能扩大对日志-负概率的调控数据,同时对当前任务进行快速微调整。在元测试期间,机能功能是固定的,因此,在Karhunan-Legencon reforation上,只有简单的直线性轨参数可调整,以便通过自动升级的不断修正。