We show that the border subrank of a sufficiently general tensor in $(\mathbb{C}^n)^{\otimes d}$ is $\mathcal{O}(n^{1/(d-1)})$ for $n \to \infty$. Since this matches the growth rate $\Theta(n^{1/(d-1)})$ for the generic (non-border) subrank recently established by Derksen-Makam-Zuiddam, we find that the generic border subrank has the same growth rate. In our proof, we use a generalisation of the Hilbert-Mumford criterion that we believe will be of independent interest.
翻译:暂无翻译