This paper studies the minimum mean squared error (MMSE) of estimating $\mathbf{X} \in \mathbb{R}^d$ from the noisy observation $\mathbf{Y} \in \mathbb{R}^k$, under the assumption that the noise (i.e., $\mathbf{Y}|\mathbf{X}$) is a member of the exponential family. The paper provides a new lower bound on the MMSE. Towards this end, an alternative representation of the MMSE is first presented, which is argued to be useful in deriving closed-form expressions for the MMSE. This new representation is then used together with the Poincar\'e inequality to provide a new lower bound on the MMSE. Unlike, for example, the Cram\'{e}r-Rao bound, the new bound holds for all possible distributions on the input $\mathbf{X}$. Moreover, the lower bound is shown to be tight in the high-noise regime for the Gaussian noise setting under the assumption that $\mathbf{X}$ is sub-Gaussian. Finally, several numerical examples are shown which demonstrate that the bound performs well in all noise regimes.
翻译:本文研究从噪音观测中估算 $\ mathbbf{X}\ mathbb{R ⁇ d$的最小平均平方差( MMSE ) 。 本文研究估算 $\ mathbf{R ⁇ d$ 在 mathbf{R ⁇ k$ 在 mathbb{R ⁇ k$, 假设噪音( 即 $\ mathbf{Y} Y) 是指数式家庭的一员, 本文对 MMSE 提供了一个新的下限 。 到此端, 首次提出了 MMSE 的替代表达方式, 用于为 MMSE 生成封闭式表达方式 。 这种新的表达方式随后与 Poincar\'e 不平等一起用于为 MMSE 提供一个新的更低约束。 不像, 比如, Cram\\ { mathb{ { { X} Rao, 新的约束将输入 $mathf{X} $ 。 此外, 下显示高诺制度 的低约束 系统 显示 $xxxx 显示 下 显示 显示 AS 度 的运行 下的所有 。