Regression discontinuity design models are widely used for the assessment of treatment effects in psychology, econometrics and biomedicine, specifically in situations where treatment is assigned to an individual based on their characteristics (e.g. scholarship is allocated based on merit) instead of being allocated randomly, as is the case, for example, in randomized clinical trials. Popular methods that have been largely employed till date for estimation of such treatment effects suffer from slow rates of convergence (i.e. slower than $\sqrt{n}$). In this paper, we present a new model and method that allows estimation of the treatment effect at $\sqrt{n}$ rate in the presence of fairly general forms of confoundedness. Moreover, we show that our estimator is also semi-parametrically efficient in certain situations. We analyze two real datasets via our method and compare our results with those obtained by using previous approaches. We conclude this paper with a discussion on some possible extensions of our method.


翻译:在评估心理学、计量经济学和生物医学的治疗效果时,广泛使用回归性不连续性设计模型,特别是在根据个人特点(例如,奖学金是根据成绩分配的)分配治疗结果的情况下,而不是像随机临床试验那样随机分配治疗结果,例如,随机临床试验的情况就是如此。迄今为止用于估计这种治疗效果的流行方法的趋同率较慢(即比美元慢,低于美元)。在本文中,我们提出了一个新的模型和方法,以便在存在相当一般的共生形式的情况下,可以估计以$/sqrt{n}的速率治疗效果。此外,我们还表明,在某些情况下,我们的估计结果也是半对称效率的。我们通过我们的方法分析了两种真实的数据集,并将我们的结果与以前采用的方法取得的结果进行比较。我们通过讨论我们方法的一些可能的扩展来完成这份文件。

0
下载
关闭预览

相关内容

专知会员服务
51+阅读 · 2020年12月14日
Python分布式计算,171页pdf,Distributed Computing with Python
专知会员服务
108+阅读 · 2020年5月3日
【新书】Python编程基础,669页pdf
专知会员服务
195+阅读 · 2019年10月10日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
53+阅读 · 2019年9月29日
鲁棒机器学习相关文献集
专知
8+阅读 · 2019年8月18日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
机器学习算法集锦:从贝叶斯到深度学习及各自优缺点
人工智能学家
11+阅读 · 2019年2月15日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Multivariate Deep Evidential Regression
Arxiv
0+阅读 · 2021年4月15日
Arxiv
0+阅读 · 2021年4月13日
VIP会员
相关VIP内容
专知会员服务
51+阅读 · 2020年12月14日
Python分布式计算,171页pdf,Distributed Computing with Python
专知会员服务
108+阅读 · 2020年5月3日
【新书】Python编程基础,669页pdf
专知会员服务
195+阅读 · 2019年10月10日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
53+阅读 · 2019年9月29日
相关资讯
鲁棒机器学习相关文献集
专知
8+阅读 · 2019年8月18日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
机器学习算法集锦:从贝叶斯到深度学习及各自优缺点
人工智能学家
11+阅读 · 2019年2月15日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员