Regression models that ignore measurement error in predictors may produce highly biased estimates leading to erroneous inferences. It is well known that it is extremely difficult to take measurement error into account in Gaussian nonparametric regression. This problem becomes tremendously more difficult when considering other families such as logistic regression, Poisson and negative-binomial. For the first time, we present a method aiming to correct for measurement error when estimating regression functions flexibly covering virtually all distributions and link functions regularly considered in generalized linear models. This approach depends on approximating the first and the second moment of the response after integrating out the true unobserved predictors in a semiparametric generalized linear model. Unlike previous methods, this method is not restricted to truncated splines and can utilize various basis functions. Through extensive simulation studies, we study the performance of our method under many scenarios.


翻译:众所周知,在高西亚的非参数回归中,很难将测量错误考虑在内。这个问题在考虑后勤回归、Poisson和负二成形等其他家庭时变得极为困难。我们第一次提出一种方法,旨在纠正测量错误,因为要灵活地估计在一般线性模型中经常考虑的几乎所有分布和连接功能的回归功能。这种方法取决于在将真实的未观测到的预测器纳入半参数通用线性模型后,对反应的第一和第二时刻进行近似一致。与以往的方法不同,这种方法不局限于断裂的样条,而是可以使用各种基础功能。我们通过广泛的模拟研究,研究我们在许多情景下的方法的性能。

0
下载
关闭预览

相关内容

专知会员服务
41+阅读 · 2021年4月2日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
【EMNLP2020】自然语言生成,Neural Language Generation
专知会员服务
38+阅读 · 2020年11月20日
Gartner:2020年十大战略性技术趋势, 47页pdf
专知会员服务
76+阅读 · 2020年3月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
MIT新书《强化学习与最优控制》
专知会员服务
275+阅读 · 2019年10月9日
使用 Keras Tuner 调节超参数
TensorFlow
15+阅读 · 2020年2月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
已删除
将门创投
6+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
1+阅读 · 2021年6月3日
Arxiv
0+阅读 · 2021年6月2日
VIP会员
相关VIP内容
专知会员服务
41+阅读 · 2021年4月2日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
【EMNLP2020】自然语言生成,Neural Language Generation
专知会员服务
38+阅读 · 2020年11月20日
Gartner:2020年十大战略性技术趋势, 47页pdf
专知会员服务
76+阅读 · 2020年3月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
MIT新书《强化学习与最优控制》
专知会员服务
275+阅读 · 2019年10月9日
相关资讯
使用 Keras Tuner 调节超参数
TensorFlow
15+阅读 · 2020年2月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
已删除
将门创投
6+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员