Constraints solvers play a significant role in the analysis, synthesis, and formal verification of complex embedded and cyber-physical systems. In this paper, we study the problem of designing a scalable constraints solver for an important class of constraints named polynomial constraint inequalities (also known as non-linear real arithmetic theory). In this paper, we introduce a solver named PolyARBerNN that uses convex polynomials as abstractions for highly nonlinear polynomials. Such abstractions were previously shown to be powerful to prune the search space and restrict the usage of sound and complete solvers to small search spaces. Compared with the previous efforts on using convex abstractions, PolyARBerNN provides three main contributions namely (i) a neural network guided abstraction refinement procedure that helps selecting the right abstraction out of a set of pre-defined abstractions, (ii) a Bernstein polynomial-based search space pruning mechanism that can be used to compute tight estimates of the polynomial maximum and minimum values which can be used as an additional abstraction of the polynomials, and (iii) an optimizer that transforms polynomial objective functions into polynomial constraints (on the gradient of the objective function) whose solutions are guaranteed to be close to the global optima. These enhancements together allowed the PolyARBerNN solver to solve complex instances and scales more favorably compared to the state-of-art non-linear real arithmetic solvers while maintaining the soundness and completeness of the resulting solver. In particular, our test benches show that PolyARBerNN achieved 100X speedup compared with Z3 8.9, Yices 2.6, and NASALib (a solver that uses Bernstein expansion to solve multivariate polynomial constraints) on a variety of standard test benches.
翻译:在分析、合成和正式核实复杂嵌入式和网络物理系统的过程中, 限制限制对小搜索空间使用声音和完整解析器。 在本文中, 我们研究设计一个可缩放的制约解析器的问题。 在本文中, 我们引入一个名为 PolyARBERNN 的解析器, 该解析器使用colvex 多元数学作为高度非线性多元分子的抽象元素。 这些抽取器以前被显示具有强大的力量, 能够将搜索空间推平, 限制声学和完整解解器的使用到小搜索空间。 与先前使用 convex 抽象质控器的重要约束类别相比, PolyARBNNN( poly) 提供了三大主要贡献, 即 (一) 由神经网络指导抽象精度改进程序, 帮助从一组预定义的抽象学中选择正确的抽象元素, (二) 伯恩斯坦- 多边基搜索空间调控机制, 可以用来对多线性州性解算法最大和最低值进行精确度估计, 可以用来作为复合性解算解算的解解算的解算法的解算法性解算法, 。 质平质平质平质平流- 3, 将结果的内硬化调调调调调调调调调调的硬化的硬化的硬化的硬化调的硬度的硬度的硬度的硬度的硬度的硬度的硬度的硬度的硬度的伸缩流流流流流流流流流流流流流流流速度,,,,, 向向向向向的硬度的硬度的伸缩的伸缩的伸缩的伸缩的伸缩的伸缩的伸缩的伸缩的伸缩的伸缩的伸缩的伸缩的伸缩的伸缩的伸缩的伸缩的伸缩的伸缩的伸缩的伸缩的伸缩的伸缩的伸缩,, 向的伸缩的伸缩, 向的伸缩缩缩伸缩的伸缩的伸缩的伸缩的伸缩的伸缩的伸缩的伸缩的伸缩的伸缩缩缩缩的伸缩的伸缩缩的伸缩缩的伸缩的伸缩缩缩