Domain decomposition methods are a set of widely used tools for parallelization of partial differential equation solvers. Convergence is well studied for elliptic equations, but in the case of parabolic equations there are hardly any results for general Lipschitz domains in two or more dimensions. The aim of this work is therefore to construct a new framework for analyzing nonoverlapping domain decomposition methods for the heat equation in a space-time Lipschitz cylinder. The framework is based on a variational formulation, inspired by recent studies of space-time finite elements using Sobolev spaces with fractional time regularity. In this framework, the time-dependent Steklov--Poincar\'e operators are introduced and their essential properties are proven. We then derive the interface interpretations of the Dirichlet--Neumann, Neumann--Neumann and Robin--Robin methods and show that these methods are well defined. Finally, we prove convergence of the Robin--Robin method and introduce a modified method with stronger convergence properties.
翻译:域分解法是一套广泛使用的局部偏差方程解析器平行化工具。 对椭圆方程的研究非常周密,但对于抛物线方程来说,一般利普西茨域在两个或两个以上方面几乎没有任何结果。因此,这项工作的目的是建立一个新的框架,用于分析空间时利普西茨圆柱体热方程的不重叠域分解法。这个框架基于一种变式配方,这种配方基于最近利用具有分时间规律的索波列夫空间对时空有限元素进行的研究。在这个框架内,引入了依赖时间的Steklov-Poincar\'e操作员,并证明了其基本特性。然后我们得出了Drichlet-Neumann、Neumann-Neuumann和Robin-Robin方法的界面解释,并表明这些方法定义得十分明确。最后,我们证明Robin方法与罗宾-Robin方法的趋同,并采用了一种与更牢固趋同特性的改良方法。