This paper presents a computationally feasible method to compute rigorous bounds on the interval-generalisation of regression analysis to account for epistemic uncertainty in the output variables. The new iterative method uses machine learning algorithms to fit an imprecise regression model to data that consist of intervals rather than point values. The method is based on a single-layer interval neural network which can be trained to produce an interval prediction. It seeks parameters for the optimal model that minimizes the mean squared error between the actual and predicted interval values of the dependent variable using a first-order gradient-based optimization and interval analysis computations to model the measurement imprecision of the data. An additional extension to a multi-layer neural network is also presented. We consider the explanatory variables to be precise point values, but the measured dependent values are characterized by interval bounds without any probabilistic information. The proposed iterative method estimates the lower and upper bounds of the expectation region, which is an envelope of all possible precise regression lines obtained by ordinary regression analysis based on any configuration of real-valued points from the respective y-intervals and their x-values.
翻译:本文介绍了一种计算可行的方法,用以计算回归分析间距的严格界限,以计算输出变量的隐性不确定性。新的迭代方法使用机器学习算法,将不精确的回归模型适用于由间隔值而不是点值组成的数据。该方法基于单层间神经网络,可以培训以产生间隔预测。它寻求最佳模型的参数,以最大限度地减少依赖变量实际值和预测间距值之间的平均平方差差,使用第一阶梯度优化和间隔分析计算法,以模拟数据的测量不精确度。还介绍了多层神经网络的附加扩展。我们认为解释变量是精确的点值,但测量的依附值以间隔界限为特征,没有任何概率性信息。拟议的迭代方法估计期望区域的下限和上限,这是根据各自 y interval 及其 x 值的实际估值点配置而通过普通回归分析获得的所有可能准确回归线的包。