Deep neural networks (DNNs) could be deceived by generating human-imperceptible perturbations of clean samples. Therefore, enhancing the robustness of DNNs against adversarial attacks is a crucial task. In this paper, we aim to train robust DNNs by limiting the set of outputs reachable via a norm-bounded perturbation added to a clean sample. We refer to this set as adversarial polytope, and each clean sample has a respective adversarial polytope. Indeed, if the respective polytopes for all the samples are compact such that they do not intersect the decision boundaries of the DNN, then the DNN is robust against adversarial samples. Hence, the inner-working of our algorithm is based on learning \textbf{c}onfined \textbf{a}dversarial \textbf{p}olytopes (CAP). By conducting a thorough set of experiments, we demonstrate the effectiveness of CAP over existing adversarial robustness methods in improving the robustness of models against state-of-the-art attacks including AutoAttack.
翻译:暂无翻译