In this work, we investigate the computational complexity of Restless Temporal $(s,z)$-Separation, where we are asked whether it is possible to destroy all restless temporal paths between two distinct vertices $s$ and $z$ by deleting at most $k$ vertices from a temporal graph. A temporal graph has a fixed vertex but the edges have (discrete) time stamps. A restless temporal path uses edges with non-decreasing time stamps and the time spent at each vertex must not exceed a given duration $\Delta$. Restless Temporal $(s,z)$-Separation naturally generalizes the NP-hard Temporal $(s,z)$-Separation problem. We show that Restless Temporal $(s,z)$-Separation is complete for $\Sigma_2^\text{P}$, a complexity class located in the second level of the polynomial time hierarchy. We further provide some insights in the parameterized complexity of Restless Temporal $(s,z)$-Separation parameterized by the separator size $k$.
翻译:在这项工作中,我们调查了无休止时空美元(s,z)-分隔的计算复杂性,我们被问及是否有可能通过从时间图中删除最多为美元(s,z)-分隔问题来摧毁两个截然不同的脊椎之间所有无休止的时间路径。一个时间图有一个固定的顶点,但边缘有(discrete)时间戳(discrete)时间戳。一个无休止的时间路径使用非下降时间戳的边缘,而每个脊椎所花的时间不得超过给定的时间长度$(Delta$)。无休止时空美元(s,z)-分隔自然地将NP-硬时空美元(s,z)-分隔问题笼统化。我们显示,无休止时空美元(s,z)-分隔对于美元($(PP-hard Temalal $(s,z)-separiz)参数大小的精度复杂性,我们进一步提供了一些见解。