Let $\mathbf{X} = (X_i)_{1\leq i \leq n}$ be an i.i.d. sample of square-integrable variables in $\mathbb{R}^d$, with common expectation $\mu$ and covariance matrix $\Sigma$, both unknown. We consider the problem of testing if $\mu$ is $\eta$-close to zero, i.e. $\|\mu\| \leq \eta $ against $\|\mu\| \geq (\eta + \delta)$; we also tackle the more general two-sample mean closeness testing problem. The aim of this paper is to obtain nonasymptotic upper and lower bounds on the minimal separation distance $\delta$ such that we can control both the Type I and Type II errors at a given level. The main technical tools are concentration inequalities, first for a suitable estimator of $\|\mu\|^2$ used a test statistic, and secondly for estimating the operator and Frobenius norms of $\Sigma$ coming into the quantiles of said test statistic. These properties are obtained for Gaussian and bounded distributions. A particular attention is given to the dependence in the pseudo-dimension $d_*$ of the distribution, defined as $d_* := \|\Sigma\|_2^2/\|\Sigma\|_\infty^2$. In particular, for $\eta=0$, the minimum separation distance is ${\Theta}(d_*^{\frac{1}{4}}\sqrt{\|\Sigma\|_\infty/n})$, in contrast with the minimax estimation distance for $\mu$, which is ${\Theta}(d_e^{\frac{1}{2}}\sqrt{\|\Sigma\|_\infty/n})$ (where $d_e:=\|\Sigma\|_1/\|\Sigma\|_\infty$). This generalizes a phenomenon spelled out in particular by Baraud (2002).
翻译:Let\ mathb{X} = (X_i)\\\ leq\ i\ leq\ leq n} 美元是 i.d.d.d. 。 通常的预期$\ mu$ 和 cofliance 矩阵$\ sgrima$, 两者都不为人知。 我们认为如果 $\ mu$ 为零, 即 $mu2\\ leq\ 美元相对于 $mu( eta + delta) 美元 美元, 则测试1 的平面变量的样本样本, 平面值代表 $2+ delta 美元 ; 平面测试问题。 本文的目的是在最小的分隔距离上获取不感性上限的上下框 $\ delta$。 这样我们可以在给定的级别上控制 类型 I 和 II 的错误。 主要的技术工具是浓度不平等, 首先用 $ ⁇ ⁇ = ⁇ ⁇ = 2 美元 的估算出一个测试统计, 其次用来估计 美元 和 Frobines 特定的统计 。