Generalized Linear Models (GLMs) have been used extensively in statistical models of spike train data. However, the maximum likelihood estimates of the model parameters and their uncertainty, can be challenging to compute in situations where response and non-response can be separated by a single predictor or a linear combination of multiple predictors. Such situations are likely to arise in many neural systems due to properties such as refractoriness and incomplete sampling of the signals that influence spiking. In this paper, we describe multiple classes of approaches to address this problem: using an optimization algorithm with a fixed iteration limit, computing the maximum likelihood solution in the limit, Bayesian estimation, regularization, change of basis, and modifying the search parameters. We demonstrate a specific application of each of these methods to spiking data from rat somatosensory cortex and discuss the advantages and disadvantages of each. We also provide an example of a roadmap for selecting a method based on the problem's particular analysis issues and scientific goals.
翻译:通用线性模型(GLMs)在高峰列车数据的统计模型中被广泛使用,然而,模型参数及其不确定性的最大可能性估计值,在单个预测器或多个预测器的线性组合可以将反应和不反应分开的情况下,对计算模型参数及其不确定性可能具有挑战性。这种情况可能在许多神经系统中出现,因为其特性包括耐受性和对影响喷射的信号的不完全抽样等。在本文中,我们描述了解决这一问题的多种办法:使用带有固定迭代限的优化算法,计算限度内的最大可能性解决办法、贝叶斯估计、正规化、基础变化和搜索参数的修改。我们展示了这些方法中每一种方法的具体应用,以便从大鼠身上提取数据,并讨论每种方法的利弊。我们还提供了根据问题的特定分析问题和科学目标选择方法的路线图实例。