Several novel imaging and non-destructive testing technologies are based on reconstructing the spatially dependent coefficient in an elliptic partial differential equation from measurements of its solution(s). In practical applications, the unknown coefficient is often assumed to be piecewise constant on a given pixel partition (corresponding to the desired resolution), and only finitely many measurements can be made. This leads to the problem of inverting a finite-dimensional non-linear forward operator $\mathcal F:\ \mathcal D(\mathcal F)\subseteq \mathbb R^n\to \mathbb R^m$, where evaluating $\mathcal F$ requires one or several PDE solutions. Numerical inversion methods require the implementation of this forward operator and its Jacobian. We show how to efficiently implement both using a standard FEM package and prove convergence of the FEM approximations against their true-solution counterparts. We present simple example codes for Comsol with the Matlab Livelink package, and numerically demonstrate the challenges that arise from non-uniqueness, non-linearity and instability issues. We also discuss monotonicity and convexity properties of the forward operator that arise for symmetric measurement settings.
翻译:几个新的成像和非破坏性测试技术的基础是从测量其溶液的测量中重建椭圆部分方程式的空间依赖系数。 在实际应用中, 未知系数通常被假定为特定像素分区( 与理想分辨率相对应的像素分区) 的片状常数常数, 并且只能进行有限的测量。 这导致将有限的非线性非线性远端操作器 $\mathcal F:\\\ mathcal D(mathcal F)\subseteq\ mathb Rn\ to\mathbrb R ⁇ _to\mathbbr R ⁇ m$, 其中, 评估$\ mathcal F$ 需要一种或数种PDE 解决方案。 数字转换方法需要执行这个前方操作器及其雅各布。 我们展示了如何既使用标准的FEM包又能证明FEM近似值与其真正溶解度对应方的操作器相融合的问题。 我们为Comsol与Matlab Liven 包提供了简单的示例代码, 也从数字上展示了由不统一性、 非线性前方测量度测量特性和不稳定性测量特性产生的难题带来的挑战。