To compute the spatially distributed dielectric constant from the backscattering data, we study a coefficient inverse problem for a 1D hyperbolic equation. To solve the inverse problem, we establish a new version of Carleman estimate and then employ this estimate to construct a cost functional which is strictly convex on a convex bounded set with an arbitrary diameter in a Hilbert space. The strict convexity property is rigorously proved. This result is called the convexification theorem and is considered as the central analytical result of this paper. Minimizing this convex functional by the gradient descent method, we obtain the desired numerical solution to the coefficient inverse problems. We prove that the gradient descent method generates a sequence converging to the minimizer and we also establish a theorem confirming that the minimizer converges to the true solution as the noise in the measured data and the regularization parameter tend to zero. Unlike the methods that are based on optimization, our convexification method converges globally in the sense that it delivers a good approximation of the exact solution without requiring any initial guess. Results of numerical studies of both computationally simulated and experimental data are presented.


翻译:为了从反射数据中计算空间分布的电离常数, 我们研究了 1D 双曲方程的系数反差问题。 为了解决反向问题, 我们建立了新版本的 Carleman 估计, 然后使用这一估计来构建成本功能, 成本功能严格结合在一个在Hilbert 空间中任意直径被绑定的曲线上。 严格的凝固属性得到严格证实。 这个结果被称为二次曲线定义, 并被视为本文的核心分析结果 。 通过梯度下行法最小化这个 convex 函数, 我们获得了理想的系数反向问题的数字解决方案 。 我们证明, 梯度下行法生成了与最小值相融合的序列, 我们还建立了一个理论, 确认最小值与真实的解决方案相融合, 因为测量数据中的噪音和规范参数倾向于为零 。 与基于优化的方法不同, 我们的粘结法是全球范围内的, 因为它提供了精确解决方案的良好近似值, 而不需要任何初步猜测 。 计算模拟和实验数据的数字研究的结果是 。

0
下载
关闭预览

相关内容

专知会员服务
76+阅读 · 2021年3月16日
专知会员服务
50+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
109+阅读 · 2020年5月15日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Learning the optimal regularizer for inverse problems
VIP会员
相关VIP内容
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员