We consider a max-min variation of the classical problem of maximizing a linear function over the base of a polymatroid. In our problem we assume that the vector of coefficients of the linear function is not a known parameter of the problem but is some vertex of a simplex, and we maximize the linear function in the worst case. Equivalently, we view the problem as a zero-sum game between a maximizing player whose mixed strategy set is the base of the polymatroid and a minimizing player whose mixed strategy set is a simplex. We show how to efficiently obtain optimal strategies for both players and an expression for the value of the game. Furthermore, we give a characterization of the set of optimal strategies for the minimizing player. We consider four versions of the game and discuss the implications of our results for problems in search, sequential testing and queueing.
翻译:我们考虑的是将线性函数最大化的经典问题的最大差异。 在我们的问题中,我们假设线性函数的系数矢量并不是问题的一个已知参数,而是一个简单x的一些顶点,我们在最坏的情况下将线性函数最大化。同样,我们把这个问题视为一个最大玩家之间的零和游戏,这个玩家的混合策略是多甲虫的基点,而最小玩家的混合策略组是简单的。我们展示了如何为玩家有效地获得最佳策略,以及游戏价值的表达方式。此外,我们给一组最佳策略的定性给最小化玩家。我们考虑游戏的四个版本,并讨论我们的结果对寻找、顺序测试和排队问题的影响。