This brief addresses the problem of implementing very large constant multiplications by a single variable under the shift-adds architecture using a minimum number of adders/subtractors. Due to the intrinsic complexity of the problem, we introduce an approximate algorithm, called T\~OLL, which partitions the very large constants into smaller ones. To reduce the number of operations, T\~OLL incorporates graph-based and common subexpression elimination methods proposed for the shift-adds design of constant multiplications. It can also consider the delay of a multiplierless design defined in terms of the maximum number of operations in series, i.e., the number of adder-steps, while reducing the number of operations. High-level experimental results show that the adder-steps of a shift-adds design can be reduced significantly with a little overhead in the number of operations. Gate-level experimental results indicate that while the shift-adds design can lead to a 36.6\% reduction in gate-level area with respect to a design using a multiplier, the delay-aware optimization can yield a 48.3\% reduction in minimum achievable delay of the shift-adds design when compared to the area-aware optimization.
翻译:这个简短的描述解决了使用最小数量的添加器/减量器在变换式结构下使用最小数量的增量/减量器实施非常大的常数乘数的问题。 由于问题本身的复杂性, 我们引入了一种叫作T ⁇ OLL的近似算法, 将非常大的常数分割成较小的常数。 为了减少操作数量, T ⁇ OLL 将基于图形的和共同的子表达式的消除方法纳入为变换式的增量设计而提出的不断倍增倍数设计。 它还可以考虑在使用乘数进行设计时界定的无倍化设计延迟, 即增加步骤的数量, 同时减少操作的数量。 高级实验结果表明, 相对于区域优化而言, 变换式设计可以大大降低增量设计的增量。 门级实验结果表明, 变换式设计可以导致门级设计在使用倍数进行设计时减少36.6 ⁇, 延迟的优化可以使变换式设计在可实现的最短时间上减少48.3 ⁇ 。