Deep convolutional neural networks for image segmentation do not learn the label structure explicitly and may produce segmentations with an incorrect structure, e.g., with disconnected cylindrical structures in the segmentation of tree-like structures such as airways or blood vessels. In this paper, we propose a novel label refinement method to correct such errors from an initial segmentation, implicitly incorporating information about label structure. This method features two novel parts: 1) a model that generates synthetic structural errors, and 2) a label appearance simulation network that produces synthetic segmentations (with errors) that are similar in appearance to the real initial segmentations. Using these synthetic segmentations and the original images, the label refinement network is trained to correct errors and improve the initial segmentations. The proposed method is validated on two segmentation tasks: airway segmentation from chest computed tomography (CT) scans and brain vessel segmentation from 3D CT angiography (CTA) images of the brain. In both applications, our method significantly outperformed a standard 3D U-Net and other previous refinement approaches. Improvements are even larger when additional unlabeled data is used for model training. In an ablation study, we demonstrate the value of the different components of the proposed method.
翻译:在本文中,我们提出了一个新的标签改进方法,以纠正最初部分的错误,隐含了有关标签结构的信息。这种方法有两个新的部分:1) 产生合成结构错误的模型,2) 产生合成结构错误的标签结构,并可能产生不正确的结构结构的标签外观模拟网络,例如,在像树状结构(如气道或血管血管)的分块中,在树状结构(如气道或血管血管)的分块中,有断开的圆柱体结构。在本文件中,我们提出了一个新的标签改进方法,以纠正最初的分块结构中的这种错误。在最初部分中纠正这种错误,并隐含了有关标签结构结构的信息。这个方法有两个新颖部分:1) 产生合成结构错误的模型,2) 和标签外观模拟网络产生合成部分(有错误)的合成部分(与真实初始部分相似。使用这些合成部分和原始图像,对标签的精细化网络进行了培训,以纠正错误和改进最初的分块。在两个分块任务上,即从胸部计算成型的胸部的扫描扫描和脑容器的分块图象图象图象图案。在不同的研究中,我们改进得更大。