We present an adaptive refinement algorithm for T-splines on unstructured 2D meshes. While for structured 2D meshes, one can refine elements alternatingly in horizontal and vertical direction, such an approach cannot be generalized directly to unstructured meshes, where no two unique global mesh directions can be assigned. To resolve this issue, we introduce the concept of direction indices, i.e., integers associated to each edge, which are inspired by theory on higher-dimensional structured T-splines. Together with refinement levels of edges, these indices essentially drive the refinement scheme. We combine these ideas with an edge subdivision routine that allows for I-nodes, yielding a very flexible refinement scheme that nicely distributes the T-nodes, preserving global linear independence, analysis-suitability (local linear independence) except in the vicinity of extraordinary nodes, sparsity of the system matrix, and shape regularity of the mesh elements. Further, we show that the refinement procedure has linear complexity in the sense of guaranteed upper bounds on a) the distance between marked and additionally refined elements, and on b) the ratio of the numbers of generated and marked mesh elements.


翻译:我们为未结构的 2D 模贝壳上的T 线提供了一种适应性改进算法。 对于结构化的 2D 模贝贝, 人们可以对横向和垂直方向交替的元素进行精细化, 但这种方法不能直接推广到结构化的模贝, 无法在其中指定两个独特的全球网格方向。 为了解决这个问题, 我们引入了方向指数的概念, 即每个边缘的整数, 由高维结构T 线的理论所启发。 这些指数与精细的边缘水平一起, 基本上推动了改进计划。 我们将这些想法与边缘分级常规结合起来, 使I- 节点能够使用, 产生一个非常灵活的精细化的精细化计划, 将T 节相配, 维护全球线性独立性、 分析性( 局部线性独立性), 除非在非常节点附近, 系统矩阵的宽度, 和 使网格元素的规律性形成。 此外, 我们表明, 精细程序在有保证的上层意义上具有线性的复杂性。

0
下载
关闭预览

相关内容

强化学习最新教程,17页pdf
专知会员服务
167+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
99+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年6月16日
AdarGCN: Adaptive Aggregation GCN for Few-Shot Learning
Arxiv
17+阅读 · 2019年3月28日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员