In this paper, we propose a computationally efficient quadratic programming (QP) approach for generating smooth, $C^1$ continuous paths for mobile robots using piece-wise quadratic Bezier (PWB) curves. Our method explicitly incorporates safety margins within a structured optimization framework, balancing trajectory smoothness and robustness with manageable numerical complexity suitable for real-time and embedded applications. Comparative simulations demonstrate clear advantages over traditional piece-wise linear (PWL) path planning methods, showing reduced trajectory deviations, enhanced robustness, and improved overall path quality. These benefits are validated through simulations using a Pure-Pursuit controller in representative scenarios, highlighting the practical effectiveness and scalability of our approach for safe navigation.
翻译:暂无翻译