Self-supervised metric learning has been a successful approach for learning a distance from an unlabeled dataset. The resulting distance is broadly useful for improving various distance-based downstream tasks, even when no information from downstream tasks is utilized in the metric learning stage. To gain insights into this approach, we develop a statistical framework to theoretically study how self-supervised metric learning can benefit downstream tasks in the context of multi-view data. Under this framework, we show that the target distance of metric learning satisfies several desired properties for the downstream tasks. On the other hand, our investigation suggests the target distance can be further improved by moderating each direction's weights. In addition, our analysis precisely characterizes the improvement by self-supervised metric learning on four commonly used downstream tasks: sample identification, two-sample testing, $k$-means clustering, and $k$-nearest neighbor classification. As a by-product, we propose a simple spectral method for self-supervised metric learning, which is computationally efficient and minimax optimal for estimating target distance. Finally, numerical experiments are presented to support the theoretical results in the paper.


翻译:自我监督的衡量学习是学习远离未贴标签的数据集的成功方法。 由此得出的距离对于改进各种基于远程的下游任务大有帮助, 即便在衡量学习阶段没有利用下游任务的信息。 为了深入了解这一方法, 我们开发了一个统计框架, 从理论上研究自我监督的衡量学习如何在多视图数据背景下有益于下游任务。 在这个框架内, 我们显示, 衡量学习的目标距离满足了下游任务的若干预期属性。 另一方面, 我们的调查表明, 调整每个方向的重量可以进一步改进目标距离。 此外, 我们的分析准确地描述了在四种常用的下游任务上自我监督的衡量学习的改进特征: 样本识别、 两类抽样测试、 美元- 平均值组合和 美元- 美元- 近邻分类。 作为副产品, 我们建议了一种简单光谱方法, 用于自我监督的计量学习, 这是一种计算高效和最优化的目标距离估算。 最后, 数字实验将支持文件中的理论结果。

0
下载
关闭预览

相关内容

度量学习的目的为了衡量样本之间的相近程度,而这也正是模式识别的核心问题之一。大量的机器学习方法,比如K近邻、支持向量机、径向基函数网络等分类方法以及K-means聚类方法,还有一些基于图的方法,其性能好坏都主要有样本之间的相似度量方法的选择决定。 度量学习通常的目标是使同类样本之间的距离尽可能缩小,不同类样本之间的距离尽可能放大。
专知会员服务
44+阅读 · 2020年12月18日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
【斯坦福大学】Gradient Surgery for Multi-Task Learning
专知会员服务
47+阅读 · 2020年1月23日
【深度学习视频分析/多模态学习资源大列表】
专知会员服务
92+阅读 · 2019年10月16日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
二值多视角聚类:Binary Multi-View Clustering
我爱读PAMI
4+阅读 · 2018年6月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Arxiv
19+阅读 · 2021年4月8日
Arxiv
31+阅读 · 2021年3月29日
Arxiv
19+阅读 · 2020年7月21日
Arxiv
13+阅读 · 2020年4月12日
Arxiv
9+阅读 · 2018年3月28日
Arxiv
3+阅读 · 2016年2月24日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
二值多视角聚类:Binary Multi-View Clustering
我爱读PAMI
4+阅读 · 2018年6月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
相关论文
Arxiv
19+阅读 · 2021年4月8日
Arxiv
31+阅读 · 2021年3月29日
Arxiv
19+阅读 · 2020年7月21日
Arxiv
13+阅读 · 2020年4月12日
Arxiv
9+阅读 · 2018年3月28日
Arxiv
3+阅读 · 2016年2月24日
Top
微信扫码咨询专知VIP会员