Pre-trained language models have attracted increasing attention in the biomedical domain, inspired by their great success in the general natural language domain. Among the two main branches of pre-trained language models in the general language domain, i.e., BERT (and its variants) and GPT (and its variants), the first one has been extensively studied in the biomedical domain, such as BioBERT and PubMedBERT. While they have achieved great success on a variety of discriminative downstream biomedical tasks, the lack of generation ability constrains their application scope. In this paper, we propose BioGPT, a domain-specific generative Transformer language model pre-trained on large scale biomedical literature. We evaluate BioGPT on six biomedical NLP tasks and demonstrate that our model outperforms previous models on most tasks. Especially, we get 44.98%, 38.42% and 40.76% F1 score on BC5CDR, KD-DTI and DDI end-to-end relation extraction tasks respectively, and 78.2% accuracy on PubMedQA, creating a new record. Our case study on text generation further demonstrates the advantage of BioGPT on biomedical literature to generate fluent descriptions for biomedical terms. Code is available at https://github.com/microsoft/BioGPT.


翻译:预训练语言模型在自然语言领域取得了巨大的成功,这在生物医学领域引起了越来越多的关注。在自然语言领域中的预训练语言模型的两个主要分支中,即BERT和GPT,BERT(和其变体)已经在生物医学领域得到了广泛的研究,例如BioBERT和PubMedBERT。虽然它们在各种分类的下游生物医学任务上取得了巨大的成功,但缺乏生成能力限制了它们的应用范围。在本文中,我们提出了BioGPT,一种在大规模生物医学文献上预训练的领域特定生成Transformer语言模型。我们在六个生物医学NLP任务上评估BioGPT,并证明我们的模型在大多数任务上优于以前的模型。特别地,在BC5CDR,KD-DTI和DDI端到端关系提取任务中分别获得了44.98%,38.42%和40.76%的F1分数,并在PubMedQA上获得了78.2%的准确度,创造了一个新的记录。我们的文本生成案例研究进一步证明了BioGPT在生物医学文献中的优势,可以为生物医学术语生成流畅的描述。源代码可以在https://github.com/microsoft/BioGPT中找到。

0
下载
关闭预览

相关内容

具有动能的生命体。
PubMed GPT : 用于生物医学文本的特定领域大型语言模型
专知会员服务
38+阅读 · 2022年12月19日
UIUC韩家炜:从海量非结构化文本中挖掘结构化知识
专知会员服务
97+阅读 · 2021年12月30日
专知会员服务
25+阅读 · 2021年8月22日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
RoBERTa中文预训练模型:RoBERTa for Chinese
PaperWeekly
57+阅读 · 2019年9月16日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Generative Adversarial Text to Image Synthesis论文解读
统计学习与视觉计算组
13+阅读 · 2017年6月9日
国家自然科学基金
22+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年5月24日
Arxiv
18+阅读 · 2020年10月9日
VIP会员
相关VIP内容
PubMed GPT : 用于生物医学文本的特定领域大型语言模型
专知会员服务
38+阅读 · 2022年12月19日
UIUC韩家炜:从海量非结构化文本中挖掘结构化知识
专知会员服务
97+阅读 · 2021年12月30日
专知会员服务
25+阅读 · 2021年8月22日
相关基金
国家自然科学基金
22+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员