Time-optimal motion planning of autonomous vehicles in complex environments is a highly researched topic. This paper describes a novel approach to optimize and execute locally feasible trajectories for the maneuvering of a truck-trailer Autonomous Mobile Robot (AMR), by dividing the environment in a sequence or route of freely accessible overlapping corridors. Multi-stage optimal control generates local trajectories through advancing subsets of this route. To cope with the advancing subsets and changing environments, the optimal control problem is solved online with a receding horizon in a Model Predictive Control (MPC) fashion with an improved update strategy. This strategy seamlessly integrates the computationally expensive MPC updates with a low-cost feedback controller for trajectory tracking, for disturbance rejection, and for stabilization of the unstable kinematics of the reversing truck-trailer AMR. This methodology is implemented in a flexible software framework for an effortless transition from offline simulations to deployment of experiments. An experimental setup showcasing the truck-trailer AMR performing two reverse parking maneuvers validates the presented method.
翻译:在复杂环境中自主车辆的机动性规划是一个高度研究的专题。本文描述了一种新颖的方法,即优化和执行当地可行的机动机动机器人机动车机动车机动车机动车机动车机动车机动车机动车机动车机动车机动车机动车机动车机动车机动车机动车机动车机动车机动车机动车机动车机动车车的机动车的操纵,将环境分为可自由进入的重叠走廊的顺序或路线。多阶段最佳控制通过推进该路线的子集产生局部轨道。为了应对推进的子集和不断变化的环境,最佳控制问题将在网上解决,在模型预测控制模式(MPC)中采用后退地平地平线方式,改进更新战略。这一战略将计算成本昂贵的机动车机动车机动车的更新与低成本反馈控制器完美地结合,以便跟踪轨迹、抑制扰动、稳定逆转的卡车机动车机动车机动车机动车机动车机动车的不稳定运动。这一方法是在灵活软件框架内实施的,以便从离线模拟向部署试验进行无力的过渡。一个实验设置实验显示卡车拖车机动车AMRRLAR车进行两次逆停车操作的实验。