Under ray-optical light transport, the classical ray serves as a local and linear "point query" of light's behaviour. Such point queries are useful, and sophisticated path tracing and sampling techniques enable efficiently computing solutions to light transport problems in complex, real-world settings and environments. However, such formulations are firmly confined to the realm of ray optics, while many applications of interest, in computer graphics and computational optics, demand a more precise understanding of light. We rigorously formulate the generalized ray, which enables local and linear point queries of the wave-optical phase space. Furthermore, we present sample-solve: a simple method that serves as a novel link between path tracing and computational optics. We will show that this link enables the application of modern path tracing techniques for wave-optical rendering, improving upon the state-of-the-art in terms of the generality and accuracy of the formalism, ease of application, as well as performance. Sampling using generalized rays enables interactive rendering under rigorous wave optics, with orders-of-magnitude faster performance compared to existing techniques.


翻译:在射线光学传输下,经典射线作为光的行为的局部和线性的“点查询”非常有用。这样的点查询可以有效地计算复杂的实际环境中的光传输问题的解决方案,而复杂的路径跟踪和采样技术则使此成为可能。然而,光学计算和计算光学中许多有趣的应用需要更精确的光学理解。我们严格形式化了广义射线,它可以在波光学相空间中进行局部和线性的点查询。此外,我们提出了样本求解(sample-solve):一种简单的方法,它作为路径跟踪和计算光学之间的新颖联系。我们将证明,这个联系使现代路径跟踪技术能够用于波光学渲染,在形式主义的一般性和准确性、应用容易程度以及性能方面比现有技术有所改进。使用广义射线进行采样可以实现严格的波光学交互渲染,其性能比现有技术快数个数量级。

0
下载
关闭预览

相关内容

Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【论文】深度学习的数学解释
机器学习研究会
10+阅读 · 2017年12月15日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
14+阅读 · 2022年10月15日
Few-shot Learning: A Survey
Arxiv
362+阅读 · 2019年4月10日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【论文】深度学习的数学解释
机器学习研究会
10+阅读 · 2017年12月15日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员