A parametric adaptive physics-informed greedy Latent Space Dynamics Identification (gLaSDI) method is proposed for accurate, efficient, and robust data-driven reduced-order modeling of high-dimensional nonlinear dynamical systems. In the proposed gLaSDI framework, an autoencoder discovers intrinsic nonlinear latent representations of high-dimensional data, while dynamics identification (DI) models capture local latent-space dynamics. An interactive training algorithm is adopted for the autoencoder and local DI models, which enables identification of simple latent-space dynamics and enhances accuracy and efficiency of data-driven reduced-order modeling. To maximize and accelerate the exploration of the parameter space for the optimal model performance, an adaptive greedy sampling algorithm integrated with a physics-informed residual-based error indicator and random-subset evaluation is introduced to search for the optimal training samples on-the-fly. Further, to exploit local latent-space dynamics captured by the local DI models for an improved modeling accuracy with a minimum number of local DI models in the parameter space, an efficient k-nearest neighbor convex interpolation scheme is employed. The effectiveness of the proposed framework is demonstrated by modeling various nonlinear dynamical problems, including Burgers equations, nonlinear heat conduction, and radial advection. The proposed adaptive greedy sampling outperforms the conventional predefined uniform sampling in terms of accuracy. Compared with the high-fidelity models, gLaSDI achieves 66 to 4,417x speed-up with 1 to 5% relative errors.
翻译:为精确、高效和稳健的数据驱动非线性动态系统减序建模,提议了一种精确、高效和由数据驱动的高维非线性动态系统减序模型的参数适应性适应性适应性知情性隐含性显示法。在拟议的GLASDI框架中,自动编码器发现高维数据的内在非线性潜在表示法,而动态识别(DI)模型则捕捉当地潜空动态。为自动编码器和地方数据数据交换模型采用了互动式培训算法,以便能够识别简单的潜空动态,提高数据驱动的减序建模的准确性和效率。为最佳模型性工作探索参数空间,采用适应性贪婪的取样算法,结合物理学知情的残余误差指标和随机子评估,以搜索最佳的在空中培训样本(DI),此外,为利用当地数据交换模型所捕捉到的当地潜值空间动态空间动力,以最低数量的本地数据交换模型来改进模型的准确性,以高效的K更近邻内线内线互换式模拟模型,4,采用适应性贪婪的贪婪的取样算算算算法,拟议的常规性框架的效益,包括移动性平流性平流性平面性平面的模拟,以模拟的平面图,以显示的平面性平面图。