Current deep neural networks are highly overparameterized (up to billions of connection weights) and nonlinear. Yet they can fit data almost perfectly through variants of gradient descent algorithms and achieve unexpected levels of prediction accuracy without overfitting. These are formidable results that defy predictions of statistical learning and pose conceptual challenges for non-convex optimization. In this paper, we use methods from statistical physics of disordered systems to analytically study the computational fallout of overparameterization in non-convex binary neural network models, trained on data generated from a structurally simpler but "hidden" network. As the number of connection weights increases, we follow the changes of the geometrical structure of different minima of the error loss function and relate them to learning and generalization performance. A first transition happens at the so-called interpolation point, when solutions begin to exist (perfect fitting becomes possible). This transition reflects the properties of typical solutions, which however are in sharp minima and hard to sample. After a gap, a second transition occurs, with the discontinuous appearance of a different kind of "atypical" structures: wide regions of the weight space that are particularly solution-dense and have good generalization properties. The two kinds of solutions coexist, with the typical ones being exponentially more numerous, but empirically we find that efficient algorithms sample the atypical, rare ones. This suggests that the atypical phase transition is the relevant one for learning. The results of numerical tests with realistic networks on observables suggested by the theory are consistent with this scenario.


翻译:目前深层神经网络高度超度(高达数十亿个连接权重)和非线性。 然而,它们可以通过梯度下移算法变量将数据几乎完全匹配,并实现出乎意料的准确性水平,而不会过于完善。 这些都是难以预测的惊人结果,无法预测统计学习,给非康韦克斯优化带来了概念挑战。 在本文中,我们使用从统计物理学学学学学学学学上混乱的系统来分析非康维克斯二进制神经网络模型中超度的计算后果,经过关于结构简单但“ 隐藏” 网络生成的数据的培训。 随着连接权重数量的增加,我们跟踪错误损失函数中不同缩微量结构的几何结构的变化,并将这些变化与学习和概括性表现相挂钩。 当解决方案开始出现时,我们第一次的交替发生在所谓的内插点( 最有可能实现完善 ) 。 这种转变反映了典型解决方案的特性, 但是在精细微的微和难测的神经网络中, 第二次转型发生, 不同“ 典型的“ 典型” 模型” 结构的不固定的外观的外观性结构, 表明, 高度空间的高度空间的深度的模型是我们所呈现的典型的典型的典型的典型的模型。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年8月2日
Arxiv
0+阅读 · 2022年8月1日
Arxiv
0+阅读 · 2022年7月30日
Arxiv
0+阅读 · 2022年7月28日
A Modern Introduction to Online Learning
Arxiv
20+阅读 · 2019年12月31日
Arxiv
19+阅读 · 2018年10月25日
VIP会员
相关资讯
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
相关基金
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员