In recent years, deep convolutional neural networks (CNN) have significantly advanced face detection. In particular, lightweight CNNbased architectures have achieved great success due to their lowcomplexity structure facilitating real-time detection tasks. However, current lightweight CNN-based face detectors trading accuracy for efficiency have inadequate capability in handling insufficient feature representation, faces with unbalanced aspect ratios and occlusion. Consequently, they exhibit deteriorated performance far lagging behind the deep heavy detectors. To achieve efficient face detection without sacrificing accuracy, we design an efficient deep face detector termed EfficientFace in this study, which contains three modules for feature enhancement. To begin with, we design a novel cross-scale feature fusion strategy to facilitate bottom-up information propagation, such that fusing low-level and highlevel features is further strengthened. Besides, this is conducive to estimating the locations of faces and enhancing the descriptive power of face features. Secondly, we introduce a Receptive Field Enhancement module to consider faces with various aspect ratios. Thirdly, we add an Attention Mechanism module for improving the representational capability of occluded faces. We have evaluated EfficientFace on four public benchmarks and experimental results demonstrate the appealing performance of our method. In particular, our model respectively achieves 95.1% (Easy), 94.0% (Medium) and 90.1% (Hard) on validation set of WIDER Face dataset, which is competitive with heavyweight models with only 1/15 computational costs of the state-of-the-art MogFace detector.


翻译:近些年来,深革命神经网络(CNN)的面部探测进展显著,特别是轻量级的有线电视新闻网结构因其协助实时检测任务的复杂程度结构低而取得了巨大成功;然而,目前以有线电视新闻网为基础的光量面部检测器为效率交易准确度不足,在处理特征代表不足、面部比例失衡和排斥等方面能力不足;因此,它们的表现比深重探测器要差得多,远远落后于深重探测器。为了在不牺牲准确性的情况下实现高效面部检测,我们在本研究中设计了一个称为高效面部检测器的高效面部检测器,其中包括三个增强特征的模块。首先,我们设计了一个新的跨规模功能融合战略,以促进自下而上的信息传播,从而进一步强化了低层次和高层次特征的交易准确性。此外,这还有助于估计面部位的位置和增强面部特征的描述性能。 其次,我们引入了一个感知地场强化模块,用于提高隐形面部面部代表能力的注意机制模块。我们评估了四种公共面部基准和实验性结果,分别展示了95比重数据。

0
下载
关闭预览

相关内容

Networking:IFIP International Conferences on Networking。 Explanation:国际网络会议。 Publisher:IFIP。 SIT: http://dblp.uni-trier.de/db/conf/networking/index.html
【2022新书】高效深度学习,Efficient Deep Learning Book
专知会员服务
117+阅读 · 2022年4月21日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
35+阅读 · 2022年3月14日
Arxiv
12+阅读 · 2021年6月21日
A Multi-Objective Deep Reinforcement Learning Framework
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
相关基金
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员