Motivated by quantum information theory, we introduce a dynamical random state built out of the sum of $k \geq 2$ independent unitary Brownian motions. In the large size limit, its spectral distribution equals, up to a normalising factor, that of the free Jacobi process associated with a single self-adjoint projection with trace $1/k$. Using free stochastic calculus, we extend this equality to the radial part of the free average of $k$ free unitary Brownian motions and to the free Jacobi process associated with two self-adjoint projections with trace $1/k$, provided the initial distributions coincide. In the single projection case, we derive a binomial-type expansion of the moments of the free Jacobi process which extends to any $k \geq 3$ the one derived in \cite {DHH} in the special case $k=2$. Doing so give rise to a non normal (except for $k=2$) operator arising from the splitting of a self-adjoint projection into the convex sum of $k$ unitary operators. This binomial expansion is then used to derive a pde for the moment generating function of this non normal operator.
翻译:根据量子信息理论,我们引入了一个动态随机状态,由美元=Geq 2美元的独立单体布朗运动总和构成。在大尺寸限制下,其光谱分布等于一个正常化系数,即与单一的自对齐投影相关的1美元/公里的免费Jacobi进程。我们使用免费随机微量计算法,将这种平等扩大到免费自由平均美元免费单体布朗运动的半径部分,以及与两个自对齐投影相关的自由Jacobi进程(toly $/k$),条件是最初分布一致。在单一投影中,我们从自由Jacobi过程的瞬间中得出一个双向式扩张,该过程延伸到任何美元=Geq 3美元,这是在cite {DH} 中得出的一个特数 $k=2美元。这样就产生了一个非正常的操作员($=2美元除外),因为当时将自对自对齐投影投影转换成美元单一操作员的组合总和正态操作员的组合。这个正常操作员的硬体扩张功能是用来生成的。