Traditional Query-by-Example (QbE) speech search approaches usually use methods based on frame-level features, while state-of-the-art approaches tend to use models based on acoustic word embeddings (AWEs) to transform variable length audio signals into fixed length feature vector representations. However, these approaches cannot meet the requirements of the search quality as well as speed at the same time. In this paper, we propose a novel fast QbE speech search method based on separable models to fix this problem. First, a QbE speech search training framework is introduced. Second, we design a novel model inference scheme based on RepVGG which can efficiently improve the QbE search quality. Third, we modify and improve our QbE speech search model according to the proposed model inference scheme. Experiments on keywords dataset shows that our proposed method can improve the GPU Real-time Factor (RTF) from 1/150 to 1/2300 by just applying separable model scheme and outperforms other state-of-the-art methods.


翻译:传统的逐个查询语音搜索方法通常使用基于框架级特征的方法,而最先进的方法则往往使用基于声词嵌入(AWES)的模型,将变长音频信号转换成固定长度的矢量表示方式。然而,这些方法无法同时满足搜索质量和速度的要求。在本文件中,我们提议了一种基于可分离模型的新型快速QbE语音搜索方法来解决这个问题。首先,引入了QbE语音搜索培训框架。第二,我们设计了一种基于REVGG的新型模型推论方法,能够有效地改进QBE搜索质量。第三,我们根据拟议的模型推论方法修改和改进了我们的QbE语音搜索模型。对关键词数据集的实验表明,我们提出的方法可以通过仅仅应用可分解模型方案,并超越其他状态方法,将GPU实时系数从1/150改进到1/2300。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
一份简单《图神经网络》教程,28页ppt
专知会员服务
123+阅读 · 2020年8月2日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
109+阅读 · 2020年5月15日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
基于PyTorch/TorchText的自然语言处理库
专知
28+阅读 · 2019年4月22日
TorchSeg:基于pytorch的语义分割算法开源了
极市平台
20+阅读 · 2019年1月28日
【泡泡一分钟】基于运动估计的激光雷达和相机标定方法
泡泡机器人SLAM
25+阅读 · 2019年1月17日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Phase-aware Speech Enhancement with Deep Complex U-Net
Neural Speech Synthesis with Transformer Network
Arxiv
5+阅读 · 2019年1月30日
Arxiv
8+阅读 · 2018年11月27日
Arxiv
3+阅读 · 2018年2月24日
VIP会员
相关资讯
Top
微信扫码咨询专知VIP会员