Trajectory prediction has been widely pursued in many fields, and many model-based and model-free methods have been explored. The former include rule-based, geometric or optimization-based models, and the latter are mainly comprised of deep learning approaches. In this paper, we propose a new method combining both methodologies based on a new Neural Differential Equation model. Our new model (Neural Social Physics or NSP) is a deep neural network within which we use an explicit physics model with learnable parameters. The explicit physics model serves as a strong inductive bias in modeling pedestrian behaviors, while the rest of the network provides a strong data-fitting capability in terms of system parameter estimation and dynamics stochasticity modeling. We compare NSP with 15 recent deep learning methods on 6 datasets and improve the state-of-the-art performance by 5.56%-70%. Besides, we show that NSP has better generalizability in predicting plausible trajectories in drastically different scenarios where the density is 2-5 times as high as the testing data. Finally, we show that the physics model in NSP can provide plausible explanations for pedestrian behaviors, as opposed to black-box deep learning. Code is available: https://github.com/realcrane/Human-Trajectory-Prediction-via-Neural-Social-Physics.
翻译:在许多领域广泛推行了轨迹预测,并探索了许多基于模型和不使用模型的方法。前者包括基于规则、几何或优化模型,后者主要包括深层次学习方法。在本文中,我们提出了一种新方法,将基于新的神经差异等同模型的两种方法结合起来。我们的新模型(神经社会物理或NSP)是一个深层神经网络,在这个网络中,我们使用具有可学习参数的清晰物理学模型。明确的物理模型在模拟行人行为方面是一种强烈的诱导偏差,而网络的其余部分则提供系统参数估计和动态相近性模型方面的强大数据适应能力。我们把NSP与最近关于6个数据集的15种深层次学习方法进行比较,并将艺术状态的性能提高5.56%-70%。此外,我们表明,NSP在预测具有与测试数据一样高密度2至5倍的极不同情景下,预测可信的轨迹是更普遍的。最后,我们显示NSP的物理模型在系统参数和动态相近的模型中可以提供深层次-历史/历史轨道。我们展示的是,可以对深层次的《准则》进行解释。