A functional dynamic factor model for time-dependent functional data is proposed. We decompose a functional time series into a predictive low-dimensional common component consisting of a finite number of factors and an infinite-dimensional idiosyncratic component that has no predictive power. The conditions under which all model parameters, including the number of factors, become identifiable are discussed. Our identification results lead to a simple-to-use two-stage estimation procedure based on functional principal components. As part of our estimation procedure, we solve the separation problem between the common and idiosyncratic functional components. In particular, we obtain a consistent information criterion that provides joint estimates of the number of factors and dynamic lags of the common component. Finally, we illustrate the applicability of our method in a simulation study and to the problem of modeling and predicting yield curves. In an out-of-sample experiment, we demonstrate that our model performs well compared to the widely used term structure Nelson-Siegel model for yield curves.
翻译:为基于时间的功能性数据提议了一个功能动态要素模型。我们将功能时间序列分解成一个预测的低维共同组成部分,由有限数量的因素和一个无预测力的无限维特异性元件组成。我们讨论了所有模型参数,包括因素数目,可以识别的条件。我们的识别结果导致一个基于功能性主要组成部分的简单到使用的两阶段估算程序。作为我们估算程序的一部分,我们解决了共同和特殊性功能组成部分之间的分离问题。特别是,我们获得了一个一致的信息标准,对共同组成部分的各种因素和动态滞后提供了联合估计。最后,我们说明了我们的方法在模拟研究中的适用性,以及模型和预测收益曲线的问题。在抽样外试验中,我们证明我们的模型与广泛使用的产值曲线Nelson-Siegel模型相比表现良好。