We propose Generative Probabilistic Image Colorization, a diffusion-based generative process that trains a sequence of probabilistic models to reverse each step of noise corruption. Given a line-drawing image as input, our method suggests multiple candidate colorized images. Therefore, our method accounts for the ill-posed nature of the colorization problem. We conducted comprehensive experiments investigating the colorization of line-drawing images, report the influence of a score-based MCMC approach that corrects the marginal distribution of estimated samples, and further compare different combinations of models and the similarity of their generated images. Despite using only a relatively small training dataset, we experimentally develop a method to generate multiple diverse colorization candidates which avoids mode collapse and does not require any additional constraints, losses, or re-training with alternative training conditions. Our proposed approach performed well not only on color-conditional image generation tasks using biased initial values, but also on some practical image completion and inpainting tasks.
翻译:我们建议产生概率性图像色彩化,这是一个基于扩散的基因化过程,用来培养一系列概率性模型,以扭转噪音腐败的每一步。考虑到一线绘制图像作为投入,我们的方法建议多种候选的彩色化图像。因此,我们的方法说明了彩色化问题的不良性质。我们进行了全面的实验,调查线绘制图像的颜色化,报告基于分数的MCMC方法的影响,该方法纠正了估计样本的边际分布,并进一步比较了模型的不同组合及其生成图像的相似性。尽管我们只使用相对小的培训数据集,但我们实验性地开发了一种产生多种不同颜色化候选人的方法,避免模式崩溃,不需要额外的限制、损失或再培训,而不需要其他培训条件。我们提出的方法不仅在使用偏差的初步价值的彩色性图像生成任务上,而且在某些实际图像完成和绘制任务上运作良好。