Region-adaptive normalization (RAN) methods have been widely used in the generative adversarial network (GAN)-based image-to-image translation technique. However, since these approaches need a mask image to infer the pixel-wise affine transformation parameters, they cannot be applied to the general image generation models having no paired mask images. To resolve this problem, this paper presents a novel normalization method, called self pixel-wise normalization (SPN), which effectively boosts the generative performance by performing the pixel-adaptive affine transformation without the mask image. In our method, the transforming parameters are derived from a self-latent mask that divides the feature map into the foreground and background regions. The visualization of the self-latent masks shows that SPN effectively captures a single object to be generated as the foreground. Since the proposed method produces the self-latent mask without external data, it is easily applicable in the existing generative models. Extensive experiments on various datasets reveal that the proposed method significantly improves the performance of image generation technique in terms of Frechet inception distance (FID) and Inception score (IS).
翻译:区域适应性正常化(RAN)方法在基于基因对抗网络(GAN)的图像到图像的图像转换技术中被广泛使用,但是,由于这些方法需要面罩图象来推断像素和面形变异参数,因此不能应用于没有配对面面罩图像的一般图像生成模型。为了解决这个问题,本文件介绍了一种新型的正常化方法,称为自像法(SPN),该方法通过在没有遮罩图像的情况下进行像素适应性缝合变,有效地提高了基因化性能。在我们的方法中,变异参数来自将地貌图特性图分割成地表和背景区域的自我拉长面罩。自我拉长面罩的视觉化表明,SPN有效地捕捉了作为地面生成的单一对象。由于拟议的方法在没有外部数据的情况下产生自相带面罩,因此很容易适用于现有的基因缩影模型。关于各种数据集的广泛实验表明,拟议的方法大大改进了Frechet的距离初始化(FID)和Inception IS) 的图像生成技术的性。