A data-driven analysis method known as dynamic mode decomposition (DMD) approximates the linear Koopman operator on projected space. In the spirit of Johnson-Lindenstrauss Lemma, we will use random projection to estimate the DMD modes in reduced dimensional space. In practical applications, snapshots are in high dimensional observable space and the DMD operator matrix is massive. Hence, computing DMD with the full spectrum is infeasible, so our main computational goal is estimating the eigenvalue and eigenvectors of the DMD operator in a projected domain. We will generalize the current algorithm to estimate a projected DMD operator. We focus on a powerful and simple random projection algorithm that will reduce the computational and storage cost. While clearly, a random projection simplifies the algorithmic complexity of a detailed optimal projection, as we will show, generally the results can be excellent nonetheless, and quality understood through a well-developed theory of random projections. We will demonstrate that modes can be calculated for a low cost by the projected data with sufficient dimension. Keyword: Koopman Operator, Dynamic Mode Decomposition(DMD), Johnson-Lindenstrauss Lemma, Random Projection, Data-driven method.
翻译:称为动态模式分解( DMD) 的数据驱动分析方法接近了预测空间上的线性 Koopman 操作员。 本着 Johnson- Lindenstrauss Lemma 的精神, 我们将使用随机投影来估计低维空间的 DMD 模式。 在实际应用中, 截图位于高维可观测空间, DMD 操作员矩阵非常庞大。 因此, 以全频谱计算 DMD 是行不通的, 因此我们的主要计算目标是估算 DMD 操作员在预测域中的精度值和精度。 我们将概括目前的算法, 以估计预测 DMD 操作员。 我们将侧重于一个强大和简单的随机投影算法, 以降低计算和存储成本。 虽然随机投影过程显然简化了详细的最佳预测的算法的复杂性, 正如我们将表明, 一般来说, 其结果是极好的, 并且通过精心开发的随机预测理论来理解质量。 我们将证明, 模式可以用预测的数据来计算出一个低成本。 关键词: Koopman 操作员、 动态模式、 模式驱动式调调调调调调调调调制、 MSDMARMDMDROML 。