There has been an increasing interest on summary-free versions of approximate Bayesian computation (ABC), which replace distances among summaries with discrepancies between the empirical distributions of the observed data and the synthetic samples generated under the proposed parameter values. The success of these solutions has motivated theoretical studies on the limiting properties of the induced posteriors. However, current results (i) are often tailored to a specific discrepancy, (ii) require, either explicitly or implicitly, regularity conditions on the data generating process and the assumed statistical model, and (iii) yield bounds depending on sequences of control functions that are not made explicit. As such, there is the lack of a theoretical framework that (i) is unified, (ii) facilitates the derivation of limiting properties that hold uniformly, and (iii) relies on verifiable assumptions that provide concentration bounds clarifying which factors govern the limiting behavior of the ABC posterior. We address this gap via a novel theoretical framework that introduces the concept of Rademacher complexity in the analysis of the limiting properties for discrepancy-based ABC posteriors. This yields a unified theory that relies on constructive arguments and provides more informative asymptotic results and uniform concentration bounds, even in settings not covered by current studies. These advancements are obtained by relating the properties of summary-free ABC posteriors to the behavior of the Rademacher complexity associated with the chosen discrepancy within the family of integral probability semimetrics. This family extends summary-based ABC, and includes the Wasserstein distance and maximum mean discrepancy (MMD), among others. As clarified through a focus on the MMD case and via illustrative simulations, this perspective yields an improved understanding of summary-free ABC.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
Arxiv
16+阅读 · 2022年5月17日
A survey on deep hashing for image retrieval
Arxiv
15+阅读 · 2020年6月10日
VIP会员
相关资讯
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员