A high-order, degree-adaptive hybridizable discontinuous Galerkin (HDG) method is presented for two-fluid incompressible Stokes flows, with boundaries and interfaces described using NURBS. The NURBS curves are embedded in a fixed Cartesian grid, yielding an unfitted HDG scheme capable of treating the exact geometry of the boundaries/interfaces, circumventing the need for fitted, high-order, curved meshes. The framework of the NURBS-enhanced finite element method (NEFEM) is employed for accurate quadrature along immersed NURBS and in elements cut by NURBS curves. A Nitsche's formulation is used to enforce Dirichlet conditions on embedded surfaces, yielding unknowns only on the mesh skeleton as in standard HDG, without introducing any additional degree of freedom on non-matching boundaries/interfaces. The resulting unfitted HDG-NEFEM method combines non-conforming meshes, exact NURBS geometry and high-order approximations to provide high-fidelity results on coarse meshes, independent of the geometric features of the domain. Numerical examples illustrate the optimal accuracy and robustness of the method, even in the presence of badly cut cells or faces, and its suitability to simulate microfluidic systems from CAD geometries.
翻译:暂无翻译