Federated learning (FL), as an emerging edge artificial intelligence paradigm, enables many edge devices to collaboratively train a global model without sharing their private data. To enhance the training efficiency of FL, various algorithms have been proposed, ranging from first-order to second-order methods. However, these algorithms cannot be applied in scenarios where the gradient information is not available, e.g., federated black-box attack and federated hyperparameter tuning. To address this issue, in this paper we propose a derivative-free federated zeroth-order optimization (FedZO) algorithm featured by performing multiple local updates based on stochastic gradient estimators in each communication round and enabling partial device participation. Under the non-convex setting, we derive the convergence performance of the FedZO algorithm and characterize the impact of the numbers of local iterates and participating edge devices on the convergence. To enable communication-efficient FedZO over wireless networks, we further propose an over-the-air computation (AirComp) assisted FedZO algorithm. With an appropriate transceiver design, we show that the convergence of AirComp-assisted FedZO can still be preserved under certain signal-to-noise ratio conditions. Simulation results demonstrate the effectiveness of the FedZO algorithm and validate the theoretical observations.
翻译:联邦学习(FL)是一个新兴的边缘人工智能范例,它使许多边缘装置能够在不分享私人数据的情况下合作训练全球模型,从而可以使许多边缘装置在不分享其私人数据的情况下进行协作培训。为了提高FL的培训效率,提出了各种算法,从一阶到二阶方法,但是,这些算法无法应用于没有梯度信息的情景中,例如,联邦黑盒攻击和联合超光谱调。为了解决这个问题,我们在本文件中提议了一种无衍生衍生的Federal-federal 零级优化(FedZO)算法,在每轮通信中根据随机梯度梯度测算器进行多次本地更新,并促成部分设备参与。在非电解层设置下,我们得出FedZO算法的趋同性性,并描述当地电离子攻击和参加边际装置对趋同的影响。为了能够使通信效率超过无线网络,我们进一步提议一种超空计算法计算法(AirComp)协助FedZO的优化算法。在适当的转录设计下,我们展示了Simcommer-Compalalalation Z prilationalationalationalationalationalvalizlationalationalationalationalizs