Deep generative approaches have recently made considerable progress in image inpainting by introducing structure priors. Due to the lack of proper interaction with image texture during structure reconstruction, however, current solutions are incompetent in handling the cases with large corruptions, and they generally suffer from distorted results. In this paper, we propose a novel two-stream network for image inpainting, which models the structure-constrained texture synthesis and texture-guided structure reconstruction in a coupled manner so that they better leverage each other for more plausible generation. Furthermore, to enhance the global consistency, a Bi-directional Gated Feature Fusion (Bi-GFF) module is designed to exchange and combine the structure and texture information and a Contextual Feature Aggregation (CFA) module is developed to refine the generated contents by region affinity learning and multi-scale feature aggregation. Qualitative and quantitative experiments on the CelebA, Paris StreetView and Places2 datasets demonstrate the superiority of the proposed method. Our code is available at https://github.com/Xiefan-Guo/CTSDG.


翻译:最近,由于在结构重建期间没有与图像纹理进行适当的互动,目前的解决办法无法处理大量腐败的案件,而且一般都受到扭曲的结果的影响。在本文件中,我们提议建立一个新型的两流图像涂料网络,以结构限制的纹理合成和纹理指导结构的重建为模型,同时以各种方式对结构限制的纹理合成和纹理指导结构的重建进行模型,使它们更好地为更合理的一代相互利用。此外,为了提高全球一致性,设计了一个双向Getature Fusion(Bi-GFF)模块,以交换和合并结构和纹理信息,并开发一个背景特征聚合模块,以完善区域亲和多尺度特征聚合所生成的内容。CelebA、巴黎街道View和Places2数据集的定性和定量实验展示了拟议方法的优越性。我们的代码可在https://github.com/Xifan-Guo/CTSDG上查阅。

2
下载
关闭预览

相关内容

图像修复(英语:Inpainting)指重建的图像和视频中丢失或损坏的部分的过程。例如在博物馆中,这项工作常由经验丰富的博物馆管理员或者艺术品修复师来进行。数码世界中,图像修复又称图像插值或视频插值,指利用复杂的算法来替换已丢失、损坏的图像数据,主要替换一些小区域和瑕疵。
最新《自监督表示学习》报告,70页ppt
专知会员服务
86+阅读 · 2020年12月22日
最新【深度生成模型】Deep Generative Models,104页ppt
专知会员服务
70+阅读 · 2020年10月24日
【论文】结构GANs,Structured GANs,
专知会员服务
15+阅读 · 2020年1月16日
【泡泡汇总】CVPR2019 SLAM Paperlist
泡泡机器人SLAM
14+阅读 · 2019年6月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
7+阅读 · 2018年1月21日
VIP会员
相关VIP内容
相关资讯
【泡泡汇总】CVPR2019 SLAM Paperlist
泡泡机器人SLAM
14+阅读 · 2019年6月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员